1
Use the cards to complete the sentences.
perimeter
cm^{2}

area

inside
m
around
\qquad is the amount of space \qquad -
a two-dimensional shape. It can be measured in units such as
\qquad or \qquad
\qquad is the distance \qquad a two-dimensional
shape. It can be measured in units such as \qquad -
or \qquad -
(2) Work out the areas and perimeters of the shapes.
a)

area $=$ \square cm^{2}

3 Work out the missing values.
a)

b)

perimeter $=40 \mathrm{~cm}$
c)

perimeter $=36 \mathrm{~m}$
d)

area $=$ \square cm^{2}
perimeter $=$ \qquad cm

4 Work out the areas and perimeters of the shapes.
a)

b)

What do you notice?

5 Draw two rectilinear shapes that have the same perimeter but a different area.

$\stackrel{\rightharpoonup}{3}$

6 Two rectilinear shapes, A and B, each have an area of $12 \mathrm{~cm}^{2}$

- Shape A has the largest perimeter possible.
- Shape B has the smallest perimeter possible.

What do you notice?

7 Mr Jones has 50 m of fencing.
He wants to make a rectilinear enclosure using all the fencing
Each side of the enclosure must be a whole number of metres.
a) Draw an example of a shape he could make. Give units on your diagram.

b) What is the greatest possible area of the enclosure? \square
c) What is the smallest possible area of the enclosure? \square
c) What is the smalest possible area of the enclosure?

